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INTRODUCTION 

This paper will be given in two separate talks, a first one presenting the general problem and applications 
to actual motors and a second talk dealing more specifically with stability theory.  

Solid propellant rocket motor instability has been the subject of many research works for more than  
40 years and valuable reviews can be found in references [1, 2]. First concerns were to understand the 
sometimes violent instabilities that occurred during motor firings that could lead to motor failure or 
destruction. The combustion mechanisms were among the first to be studied since most of the energy 
released in the motor chamber is due to chemical reactions linked to propellant combustion. Indeed, only a 
very small fraction of this energy could, if directed to few instability modes, results in abnormal strains 
that could lead to propellant or case failure and then to motor destruction (see [2]). Instability modes can 
be of several types and had been classified into volume modes and acoustic modes (see [1]). Only the 
latter will be considered here since they appeared to be the most unpredictable. In such situations,  
the instabilities organize themselves around chamber acoustic modes and produce acoustic resonances, 
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Motor Flow Instabilities – Part 1  

much like an organ pipe. The fact that motor combustion chamber consists of a closed cavity (except for 
the nozzle, but we will see that it may be assimilated to an acoustically closed end) favors that 
interpretation. The so-called acoustic balance methods belong to that vision. Expressions for gains and 
losses to given chamber acoustic modes are looked for from knowledge of propellant combustion and 
mean flow organization incorporated into a linearized analysis. The objective is to identify modes that 
could be linearly unstable, that is to say that would grow to infinite amplitudes from infinitely small 
perturbations. In that acoustic view and in order to obtain tractable expressions, the flow field had to be 
idealized and was viewed as a perturbation of acoustic equations. However in the last 20 years it became 
evident that the complexity of the chamber internal flows could produce flow instabilities that could alone 
drive the resonance. Interestingly enough, the musical paradigm was shifted to the flute, where the role of 
air motion is more evident than in an organ pipe (although the physical mechanisms are very much the 
same). In that process, most of the simplified hypotheses of the acoustic balance approach had to be 
questioned and the resulting vision was much more general and embraced the entire internal flow 
(including combustion) and the instabilities were non longer solely combustion instabilities but flow 
instabilities. 

Before we go into the details of that paper, few remarks must be made, relative to time and length scales. 
Although solid propellant motors have the particularity of having a combustion chamber whose geometry 
continuously varies with time (due to propellant combustion) analysis of time scales permits to consider a 
succession of fixed geometries. Indeed the propellant regression rate (< 1 cm/s) is at least two order of 
magnitude smaller than flow velocity (few m/s) which is itself at least two order of magnitude smaller than 
the speed of sound (1000 m/s) that governs the propagation of acoustic waves. As a result, one can 
considers that the geometry is fixed during the time one looks at vortices development and displacement 
into the chamber or the time one looks at the amplification of an acoustic wave during few cycles.  
Only analysis of long time behaviors or hysteresis phenomenons would require the consideration of 
propellant surface regression. A similar analysis can be performed for the length scales. Indeed, propellant 
gaseous combustion occurs in few tens of microns above the propellant surface, while the vortices or 
acoustic length scales are often close to the cm or m. Again, one can consider the combustion of gaseous 
species to be assimilated to the boundary conditions of the instability problem. Only the case of condensed 
phase combustion (typically aluminum combustion) which has length scale of cm, could impact the 
instability analysis. This will be discussed later on. 

Another remark must be made at this stage. A quick view of motor operating pressures (in the range of 
several 106 Pa) and temperatures (from 2600 to 3600 K) indicates that measurements inside the motor is a 
challenging task (not mentioning the vibrations, the presence of combustion products in condensed phase 
and the difficulty of drilling holes for probe access in a lightweight pressurized vessel). It is thus an 
evidence that measurements in a production motor is scarce and that only research motors can be equipped 
with the needed transducers to acquire a satisfactory knowledge of what is going on inside. Most often, 
investigators must rely on a limited number of pressure transducers, only some of them being rated for the 
necessary unsteady measurements. To compensate these intrinsic difficulties, researchers have developed 
several means of simulating rocket motor operating conditions. These rank from cold flow simulators, 
where air, or nitrogen, is injected through porous surfaces that simulate the motor geometry at chosen time 
points during the burn and, more recently, to numerical simulations of chamber internal flows, again at 
chosen time points during the burn. These simulations permit to access to the details of the internal flow 
which complement the pressure measurements obtained from actual motor firings. 

MOTOR STABILITY 

General Overview 
Motor stability discussion will be limited to the case of acoustic instabilities, where the fluctuating field is 
organized around the chamber standing acoustic modes. The case of longitudinal modes is the most 
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documented case and will be used throughout this paper. Extensions to transverse modes (radial or 
tangential modes), although important, will not be directly addressed nor can it be either easily deduced 
from the presented materials. The interested reader is let to work out his way in that matter by his own. 

Analysis of motor stability relies on the following simple decomposition:  t),,(p'  )(P  t),P( rrr +=  where 
overbar indicates mean values, prime indicates fluctuating values, r is the position vector and t is the time 
variable. This decomposition is general and no assumptions are made at this point. 

The figure below presents a schematic of physical processes that take place inside a solid propellant rocket 
motor. 

 

1) Heterogeneous combustion 

2) Convection et radiation of acoustic 
waves through the nozzle 

3) Acoustic boundary layers  
(forced vortical waves) 

4) Reactive condensed phase 

5) Vortex-shedding (free vortical 
waves) 

6) Turbulence 

Figure 1: Physical Phenomenons in a SRM. 

Not all these phenomenons are directly taken care of in usual approaches of motor instabilities. 
Approximations are common place, due to the lack of knowledge and/or the complexity of the 
mechanisms. For instance, the heterogeneous nature of the combustion of solid propellant is rarely given a 
full treatment, most often, it is averaged and treated as an equivalent homogeneous process, such as 
burning rate laws (apn) or response functions to fluctuating pressure. Nozzle treatment relies on numerous 
analyses and is quite satisfactory, at least for the most classical case of longitunal modes and axial nozzles. 
Acoustic boundary layers is a particular topic which corresponds to attempts to introduce the vortical 
nature of the unsteady flow into acoustic treatments. We will see that this question largely overpasses the 
simple acoustic treatment since the notion of unsteady vorticity fiercely opposes the acoustic point of 
view. For the present time, it suffices to say that unsteady vortical waves are naturally generated when an 
acoustic wave sweeps above the burning propellant surface, where the velocity is forced to be 
perpendicular to the surface (no slip condition). The role of viscosity in that process has been 
misunderstood (as essential in stating the no-slip condition while this condition can be simply, in an 
inviscid view, linked to mass and momentum balances at the propellant surface) and finally may appear to 
be of secondary importance. However, the impact of this process on the acoustic balance is important and 
the fact that it is not yet fully understood does not diminish its role. Quite often the condensed phase is 
considered as inert (e.g. alumina droplets) and composed of a limited number of sizes, although it is 
known that aluminum burns in a complex (and not yet perfectly known) manner, generating a continuum 
of droplet sizes, from the microns to the tenths of millimeter sizes. This matter constitutes one of the 
presently active research issues relative to motor stability and will be discussed later on. Vortex-shedding 
will also be discussed in some details later on, since the research is much more advanced on that subject. 
Its merit is to introduce the flow field as an actor to its own destabilization. Indeed periodic vortex-
shedding can be viewed as a path for energy to be transferred from the mean flow to the fluctuating field. 
The fact that vortex-shedding can occur at discrete frequencies, some of them being capable of matching 
acoustic frequencies, differentiates this mechanism from the next one, turbulence, which rather implies a 
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continuum of frequencies. Although turbulence is also an energy path between the mean flow and the 
fluctuating field, the lack of distinguished frequencies makes this path much less effective in producing 
instabilities. Indeed, the gained experience shows that large turbulent levels inhibit motor instabilities 
which are built on a delicate balance of resonant mechanisms. However, it must not be forgotten that 
turbulence, when limited to usual levels, is also a very effective seed to local instabilities that can then 
feed the overall instability mechanisms. 

It is useful to consider the equation for a simple oscillator of state variable p, where dot indicates time 
derivative, α the linear damping coefficient, ω the angular frequency and F(t) a forcing function: 

stable0
unstable0

)t(Fpp2p 2

>α
<α

=ω+α+ &&&

 

This apparently linear equation can bear some form of non-linearities that can show up in the form of 
dependencies of the coefficients on the state variable, p, such as α(p) or F(p, t). Under the assumption that 
α << ω, the solution of the linear homogeneous equation takes the simple form, p = p0 exp(iωt - αt). 

The figures below depict particular behaviors: 

  

Figure 2-a: Linearly Unstable. Figure 2-b: Harmonically Forced Linearly Unstable and 
Non-Linearly Stable (α > 0 for Large Amplitudes). 

  

Figure 2-c: Linearly Stable. Figure 2-d: Linearly Stable, Harmonically Forced. 
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It can be seen that cases b) and d) lead to limit amplitudes when some harmonic forcing functions are 
applied. Case d) is of particular interest since it may correspond to actual behaviors observed in large 
segmented space boosters, which while predicted linearly stable, exhibit limit amplitude cycles. For these 
cases, it is believed that periodic vortex-shedding could be the forcing function, although this point 
remains largely open to debate. 

Acoustic Balance 
Before recalling the acoustic balance approach, it must be stressed that acoustic balance methods can be 
viewed as a linear analysis of the stability of chamber acoustic modes, much like the above simple 
oscillator examples. In the absence of forcing function, an inhomogeneous Helmoltz equation and its 
boundary conditions are derived from the linearized equations of motion. Inhomogeneities arise from 
considerations of the mean flow and the associated combustion, choked nozzle and two-phase flow 
effects. Solutions are sought as perturbations of reference acoustic modes, solutions of the homogeneous 
equations (in the absence of mean flow and associated phenomenons). That process establishes strong 
dependence on the acoustic point of view since the final solution can only be small (in the linear sense) 
perturbation to the acoustic reference mode. The validity of the final solution is thus limited by 
assumptions which underlie the reference acoustic solution. 

The acoustic balance method was first proposed by Hart & McClure [3] and was given its most practical 
form by Culick [4-6]. The acoustic balance technique belongs to the asymptotic expansion methods.  
Every variable F is split into its mean, F , and fluctuating, F', parts:  

F F F' with F' F= + = <<ε 1. 

ε is a perturbation parameter that characterizes the instability and is used to split the governing equations 
into successive powers of ε. A second perturbation parameter, M , representing the mean flow Mach 
number, is used to simplify the equations. Assuming M <<1 implies that the mean flow remains 
incompressible, which is a good approximation in the combustion chamber, for practical situations.  
The use of two perturbation parameters imposes to fix their respective order of magnitude. Considering 
that the unsteadiness is added to an existing mean flow, it is assumed that: 

ε
ε

, M
Lim M

→
=

0
0  

Then application of this technique to the fluid mechanic equations of mass, momentum and energy 
balance, leads to the following classes of problems: 

ε M  Problem 
0 M  Steady, incompressible flow 

ε 0 Acoustic, without mean flow 

ε M  Linear coupling: mean flow-acoustic 

The order εM  is the lower order that permits the description of the instabilities and corresponds to linear 
equations in ε. As a consequence, only the tendencies of infinitesimal perturbations to grow or decay can 
be determined in the form of a damping coefficient α (F'∝e-αt). One of the advantages of the linear 
approach is that it permits to think additively. Indeed, the total damping is the sum of particular αi ,  
that can be determined (or corrected) separately: 
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α α= ∑ i
i

 

The acoustic balance approach will be briefly described below, following Culick’s paper (see [6]). 
Assuming that the combustion products form a two-phase mixture (subscript p represents the condensed 
phase of single class of size Dp), let ρp be the apparent particulate density: 

ρp pN m= , 

with N the number of particles per unit volume and mp the mass of a particle. The conservation equations 
can be written, for and inviscid fluid and inert particles, as follows (the primitive variables are used instead 
of conservative variables for convenience): 

mass: 

 ( )∂ρ

∂
∂
∂

ρg

i
g it x
u+ 0=  (1) 

 ( )∂ρ

∂
∂
∂

ρp

i
p pit x
u+ 0=  (2) 

momentum: 

 pi
ij

i
jg

i
g F

x
p

x
u

u
t

u
=

∂
∂

+
∂
∂

ρ+
∂
∂

ρ  (3) 

 pi
j

pj
pip

pi
p F

x

u
u

t

u
−=

∂

∂
ρ+

∂

∂
ρ  (4) 

energy: 

 p
i

i

i
iVgVg Q

x
u

p
x
TuC

t
TC =

∂
∂

+
∂
∂

ρ+
∂
∂

ρ  (5) 

 p
i

p
pip

p
p Q

x

T
Cu

t

T
C −=

∂

∂
ρ+

∂

∂
ρ  (6) 

Fp is the drag force exerted by the particles on a unit volume of gas and Qp is the heat transferred to the gas 
from the particles. For the study of unsteady two-phase flow, it is generally assumed that the two phases 
are in equilibrium for the steady motions (the unsteady motions will be the cause of unequilibrium).  
This leads to the following notations: 

upi = ui + δupi and Tp = T + δTp , where δ’s will have zero mean values. These definitions, together with 
eqns (4) and (6) lead to the following new inter-phase terms: 

 












∂

∂δ
+

∂
∂

δ+
∂

∂δ
ρ−=δ

j

pj
i

j
pi

pi
ppi x

u
u

x
uju

t
u

F  (7) 

 












∂

∂δ
+

∂
∂

δ+
∂

∂δ
ρ−=δ

i

p
i

i
pi

p
pp x

T
u

x
Tu

t
T

CQ  (8) 
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Finally, defining the mixture properties as: 

κ = ρp/ρg 

ρ* = (1 + κ)ρg  

CV* = (CV + κC)/(1 + κ) 

R* = Rg/(1 + κ): mixture perfect gas constant 

p* = p = R*T/ρ* = RT/ρ: static pressure 

γ* = 1 + R*/ CV* = γ(1 + κC/Cp)/(1 + κC/CV) 

( )( )
a

C C
C C

ap

V
g* =

+

+ +













1
1 1

1
2κ

κ κ
 

equations (3) and (5) can be rewritten for the mixture: 

 ρ
∂
∂

ρ
∂
∂

∂
∂

δ* *
u
t

u
u
x

p
x

Fi
j

i

j i
pi+ + =  (9) 

 ρ
∂
∂

ρ
∂
∂

∂
∂

δ* *C T
t

C u T
x

p
u
x

QV V i
i

i

i
p

∗ ∗+ + =  (10) 

Then eqn (10) can be written for the pressure: 

 ∂
∂

∂
∂

∂
∂

δ
p
t

u p
x

R
C

p
u
x

R
C

Qi
i V

i

i V
p+ + +









 =∗

* 1 ∗
*  (11) 

At this point it is interesting to note, that under the assumptions of a steady state motion and of inert 
particles, eqn. (2) gives: 

( )∂
∂

κρ
x

u
i

g i = 0  

which, using eqn. (1), leads to: 

( )u
xi

i

∂
∂

κ = 0  

implying that κ is conserved on any streamline. Since κ is uniform on the propellant surface, κ is uniform 
throughout the chamber. 

The next step is to develop eqns. (9) and (11) to first order in ε and M . It must be noted that the inter-
phase equilibrium hypothesis permits to assimilate the mixture (superscript *) and the steady gas motion 
(notation ¯ ). 
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Steady state:  

( ) )M(O0u
x

2
i

i
+=

∂
∂  

( ) )M(O0p
x

2

i
+=

∂
∂  

First order:  
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i
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u
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t

u  (13) 

Then, taking the time derivative of eqn. (12) and combining with the divergence of eqn. (13) and assuming 
harmonic motions ( F' i tF= ~ exp( )ω ), one gets an inhomogeneous Helmoltz’s equation for p. This equation 
is valid in the interior domain Ω where the mean flow can be assumed incompressible. Its boundary 
conditions are obtained by taking the scalar product of eqn. (13) with the outward unit normal vector, ni , 
along the chamber boundaries: 

 h
~

p~k
xx
p~ 2

ii

2
=+

∂∂
∂  (14) 

 f
~

x
p~n
i

i −=
∂
∂

⋅  (15) 

with:  

( ) aik α+ω=  

 

( ) ( )







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


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∂
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δ
∂
∂

+δ
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=
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x
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a
1i

x
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u
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~

 (16) 

 










∂
∂

+
∂
∂

ρ−δ−ρω=
j

i
j

j

i
jipiiii x

u
u~

x
u~

unF~nu~nif
~  (17) 

For the unperturbed case (rigid boundaries (∗), no mean flow and no particles), one has classically: 

 0p~k
xx

p~
N

2
N

ii

N
2

=+
∂∂

∂  (18) 

                                                      
(∗) This assumption is justified in most cases, except the cases with “long nozzles” where the nozzle admittance must be taken 

into account in eq. (19) (see ref. [7]). 
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 0
x
p~

n
i

N
i =

∂
∂
⋅  (19) 

Combining eqns. (14) to (19) and taking a volume average over the domain Ω, one can arrive, after some 
tedious algebra, for an expression (eqn. 20) for the perturbed wave number, k, valid at first order,  
and making use of the unperturbed eigen mode of the chamber: 

 
( ) ( )

( ) Vdp~Q~
a

k
1iVd

x
p~

F~
Sdp~MAikEkk

Np
N

i

N
pi

2
NnnN

2
N

2
N

2

∫∫

∫

ΩΩ

Ω∂

δ−γ−
∂
∂

δ−

+−=−
 (20) 

The following definitions are used:  

∫Ω= Vdp~E 2
N

2
N  

A a u n
p

M
u n

a

n
i i

n
i i

=

=

ρ
~ '

~

'
 

where n'i is the inward pointing unit normal vector. 

It must be noted that to arrive at equation (20) one has to assume that the vector ~ui  is proportional to the 
gradient ∂ ∂~p xN i , imposing an irrotational field for the unsteady velocity. This assumption bears several 
limitations for the use of the acoustic balance. Indeed recent works have demonstrated that the unsteady 
velocity field may be highly rotational, as a consequence of the propellant side injection [e.g. 8-11]. 
Recent works propose a modification of the acoustic balance technique [10] to account for unsteady 
vorticity. It is outside the scope of this paper to discuss that matter. It must also be said that in situations 
where vortex shedding takes place, the assumption of an irrotational velocity field is also incorrect.  

Equation (20) can be split in its real and imaginary parts to give the following equations for the frequency 
shift and the damping coefficient, brought by the perturbation (assuming that α2 <<ω2 ): 
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 (21) 
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 (22) 
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Particular Contributions to the Acoustic Balance 
The last two volume integrals of the above equations concern the particulate damping and will be 
discussed in a following section. Concentrating on eqn. (22), and discarding the particulate dampings, 
usual form will be given. The first surface integral can be broken over the following surfaces: 

• Propellant surfaces: due to the propellant combustion, Mn represents the injection Mach number, 
Minj , and An the propellant admittance. It is common practice to use the propellant burning rate 
response, RMP , instead of the admittance. These two quantities are linked by the following 
relationship: 

[ ]

R
v v
p p p p

p
aM

u n
p

R
M

M A

MP
c c

inj

i i

MP
inj

inj n

= = +

⇒ = +

' ' ' '

' '
.
'

ρ ρ

γ
1

 

A global response is sometimes defined as: Rc = RMP + RTP , with RTP being the temperature response. 
Assuming isentropic oscillations leads to: 

R R
T T
p p

Rc MP MP= + = +
−

'

'
γ
γ

1  

Then, assuming that the propellant combustion does not depend one the location, the combustion term αc 
can be obtained as: 

 ( )
Vdp~2

Sdp~

RReaM
2
N

2
NS

MPinjc
inj

∫

∫

Ω

γ−=α  (23) 

• 

• 

Inert walls: their contributions are obviously zero. 

Nozzle entrance plane: due to different normal vectors orientations, Mn represents -ML , and An 
represent -AL , with ML and AL being the nozzle inlet Mach number and acoustic admittance 
respectively. Assuming uniform properties across the nozzle entrance plane, the nozzle term is 
broken into the following convective, αNC , and radiative, αNR , parts: 

 
Vdp~2

Sdp~
Ma

2
N

2
NS

LNC
L

∫

∫

Ω

=α  (24) 

 ( )
Vdp~2

Sdp~
ARea

2
N

2
NS

LNR
L

∫

∫

Ω

=α  (25) 

Once the propellant and nozzle properties are known, evaluating the motor linear stability is only a 
question of computing the reference acoustic mode, solution of eqns. (18) and (19), and evaluating the 
different stability integrals appearing in αc , αNC , and αNR. The resulting damping coefficient will then be  
α = αc + αNC + αNR. 

This will be illustrated for a simple cylindrical port motor displayed in fig. 3, and for the case of the  
qth longitudinal mode.  
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Figure 3: Simple Cylindrical Motor. 

The following equations are used: 
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To estimate the effectiveness of the dampings, α must be compared to the frequency, fq = q a/(2L), so that: 
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It must be noted that for short nozzles, it is common to approximate the real part of the nozzle admittance, 
AL , by its value derived from a quasi-steady analysis: 
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This permits to evaluate the relative order of magnitude of equations (24) et (25). Assuming γ ≈ 1.2, it is 
found that the radiative term represents roughly 10% of the convective one. The fact that Re(AL) is a small 
number validates the assumption that the nozzle entrance plane behaves much like a rigid wall. 

Then evaluating the resulting α, one gets in this simple case: 

 ( ) 



 −γ

++γ−=
α

2
12RReM

R
L

q
2

f MPinj
q

 (26) 

From this equation it appears that unless Re(RMP) is larger than (γ+3)/2γ (≈ 1.75) stability will be 
predicted. This limit will be even higher when the flow-turning correction will be added to the acoustic 
balance (see next section). 

In more complex situations, the stability integrals must be carried out numerically, as well as the 
determination of the reference acoustic mode. It can be seen from eqns. (23) and (24-25) that the location 
where the combustion takes place and/or where the nozzle is located with respect to the reference acoustic 
mode will affect the global balance. In particular, the most famous T burner, with its propellant samples at 
the chamber ends and its nozzle at the mid-chamber position, will favor motor instability (which is what it 
was designed for). 

Flow Turning Issue 
The flow turning issue is a long debated subject (e.g. see [1, 2, 6, 8, 10, 12, 13]). It appeared from the fact 
that the results of the 1D acoustic balance are different from the 3D ones. An additional term is found in 
the form of a surface integral over the burning surface: 

 Sd
dx
p~d
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injS

2
N

inj2
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2
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FT ∫ 



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This term was extended to the 3D analysis by Culick [6]. It derives from the condition of a no-slip 
boundary condition that can be freely imposed in 1D whereas the 3D approach forces an irrotational 
unsteady field. This was interpreted as a viscous effects, due to acoustic boundary layers. However,  
a simplified viscous treatment, near the injecting surface, led to a different expression [8], resulting from 
the “apparent” propellant admittance. Indeed, the actual propellant admittance has to be corrected from the 
displacement effect of the viscous layers. In the case of the relatively strong blowings encountered in 
SRM, this correction had a limiting value, independent of the viscosity, which was troubling. This term, 
supposed to replace the αFT term, was: 

 ( ) Sdp~M
E2
a

injS
2

Ninj2
N

BL ∫=α  (28) 

Please note that in the case of a pure cylindrical motor, both eqns. (27) and (28) give the same result, 
adding to the trouble. The discussion was further fed by full numerical solutions of the unsteady Navier-
Stokes equations [9, 11] that clearly showed that the unsteady velocity field was clearly rotational, 
invalidating both the 1D and the 3D approaches and the αFT term, but also that the so-called acoustic 
boundary layers were very thick, invalidating the admittance correction approach and the αBL term.  
In several recent papers [e.g. 14], Majdalani et al. revisited the problem of unsteady vorticity in acoustic 
solutions and proposed a unified mathematical framework. 
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In any cases, most researchers agree to the fact that the uncorrected acoustic balance, as expressed in  
eqn. (26), underestimates the motor stability. Indeed, for the simple cylindrical motor, one gets: 

inj
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q
2

ff
=
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α  

leading to the following expression: 
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 (29) 

which sets the stability limit to Re(RMP) larger than (γ+5)/2γ (≈ 2.58), which is a rather large value for the 
real part of the response function. One may then conclude, that if the combustion is the only driving 
mechanism, most motors should be stable on their longitudinal modes, which is unfortunately not the case. 
For transverse modes and especially the tangential modes, the above analysis leads to less marked 
conclusions, in particular due to the nozzle terms which contributes to only limited losses. 

Two-Phase Flows 
Since most motors use metallized propellants, the combustion products carry some amount of condensed 
phase products, such as alumina droplets. These will add to the motor stability. In fact, one of the  
reasons to load propellants with metal powder, such as aluminum, is to increase the stability of the motors 
(another reason being the benefit of increased specific impulse).  

Evaluation of the particulate terms in eqns. (21) and (22), can be done providing that ad-hoc laws are 
supplied for the drag force and the heat transferred between phases. Reference [15] describes the  
problem and proposes solution methods. It is common practice to evaluate the two-phase flow terms  
for the simplified Stokes regimes, valid for small (less than unity) particular Reynolds numbers 
(Rep = ρ Dp ∆Up /µ , where ∆Up is the velocity difference between the two phases). For low amplitude 
oscillations, this is consistent with the equilibrium hypothesis, since then: 

µ

δρ
=

ppg
p

~D
)Re(

u
 

Under these conditions, the drag coefficient takes the well known value of: 

CD=24/(Re)p 

and the convective heat transfer coefficient is taken as: 

h'=2λ/Dp (Nusselt number =2), 

This leads to the following linear relations: 

pppp )D3(N uF δπµ=δ  

pppp T)D2(NQ δπλ=δ  
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At first order, eqns. (7) et (8) lead to: 
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Finally, expressing δFp et δQp as functions of the fluctuating velocity and temperature (which, at first 
order, can be directly linked to ∂pN/∂x and pN , one gets: 
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These are then incorporated into eqns. (21) et (22). With some further approximations, valid for small κ 
and for C/Cp et C/Cv close to unity, the particular damping term can be expressed as: 
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Please note that on the contrary to the preceding terms, this expression involves a volume effect. 

For the simple cylindrical motor, this expression becomes: 
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and finally: 
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Neglecting the thermal term, the optimum damping is obtained for ωτv = 1, which leads to: 
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This relation can be used to adjust the propellant loading to damp potentially unstable modes (most of the 
time, the feared tangential modes) by selecting the proper particle sizes. 

Conclusion/Limitations 
The above sections described the engineer tools for predicting motor stability. In practical situations, 
which depart from the simple cylindrical motor considered here, this task involves the determination of the 
reference acoustic modes and the evaluation of the stability integrals. Inputs to the model are the 
propellant response function, the nozzle admittance and the particular phase sizes. These can be obtained 
from experiments, dedicated to that characterization effort, and bear some uncertainties, sometimes quite 
large, due to the complex physical mechanisms involved. This, added to the fact that some difficulties 
arise from the formulation itself (e.g. how to express the flow-turning loss or the nozzle admittance in 
complex geometries), makes the acoustic balance a “useful tool of limited validity”. It is not surprising 
that stability is predicted most of the time, while unstable motors keep haunting the rocket 
engineers’ nights. 

FLOW STABILITY 

Presentation 
From what precedes, it is clear that some sources of instability are missing from the acoustic balance 
approach. Flandro and Jacobs [16] were the first to mention the “vortex-shedding” as a possible additional 
driving to the motor stability balance. It was viewed as a coupling between a shear layer instability (in the 
hydrodynamic sense) and the chamber acoustic. First works considered simple correlations in term of 
critical Strouhal numbers (see [17] for a detailed presentation). These Strouhal numbers were based on the 
mean axial velocity (U) and either on the port diameter (D): (St)D , or on the stand-off distance between 
the vortex generation point and its impact, l , (St)l: 

(St)D = fD/U and (St)l = fl/U 

References [18-24] present interesting attempts to use correlations of this type. However, it must be 
stressed that such correlations have a limited predictive merit and can be compared to the celebrated  
“age of the capitain” formula (mast height divided by the ship speed): all the difficulty lies in the 
proportionality constant which has no universal quality. Reference [20] goes one step further in using the 
Rossiter’s formula to correlate the observed frequencies. This approach uses the relative time delays of the 
vortex emission to the acoustic feedback. The figure hereafter illustrates this point of view. 

Acoustic 
feedback 

Vortex 
generation 

Vortex 
impact

Acoustic 
excitation 

l

 kU 
m 

βT 

 

Figure 4: Illustration of the Vortex-Shedding Phenomenon. 
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Let T be the time period of the vortex-shedding, k the ratio of vortex displacement velocity to the mean 
axial flow velocity, U, β an empirical constant representing the time delay between vortex impact and 
acoustic wave emission and m the number of vortices on distance l , then one gets: 

mT = l/kU + l/c + βT 

k and β are empirical constants that must be case adjusted from the measurement of the frequency. 

Reference [20] uses this relationship to express (St)l as: 

k/1M
m)St(
+
β−

=l  

 ( β−≈
+
β−

= mUk
k/1M

mUf:toleading
ll

)  (31) 

M is the Mach number associated to U and can be neglected before 1/k (always greater than 1). 

Application of this formula to the Titan SRMU leads to values of m in the range 5-12, and to k = 0.58 and 
β = 0.25, which is in reasonable agreement with previous works (see [20]). 

It is important to stress that such an approach is simplified and cannot be fully predictive. However it turns 
out to be quite useful in interpreting firing test measurements. 

The most complete approach to this problem is that of Flandro [22]. Vortex properties (wave length, 
displacement speed) are derived from the hydrodynamic stability analysis of the velocity profile at the 
origin of vortex-shedding. The impact mechanisms are modelized through a localized volumetric force. 
References [17, 23-25] present applications of this method to the Ariane 5 MPS P230 solid boosters.  
The aim is to derive a vortex-shedding additional term, αVS , to the acoustic balance results. However,  
non realist values are obtained (due to the strong linear growth of the vortices) and the method was limited 
to a qualitative analysis (driving or damping effects) that is based on the phase difference between the 
vortices at impact and the acoustic field. This method will not be further detailed here, although it 
represents a unique attempt to quantify the Rossiter’s equation from first principles, because it was found 
to be extremely sensitive to unknown details, such as the precise location of the vortex origin.  
The interested readers are referred to references [22-25 and 17]. 

Looking back at the acoustic balance approach, it is interesting to look at the implications of rotational 
fields on the final equations (see [26, 17]). Indeed, assuming that the unsteady velocity is no longer 
aligned with the gradient of the acoustic pressure, additional terms result from the linearization of the 
u.∇u term in the RHS of eqn. (20). These terms take the following form: 

[ ]{ }∫ ∫∫Ω ΩΩ
∧+∧+ρ dVp~)~(dVp~)~(dVp~)~-~(k NNNN

2
N ∇ω∇ω .u.uuuu.  

These integrals are difficult to evaluate in general and need to know the flow organization in the volume 
of the motor. However, it is interesting to note that the last integral implies unsteady vorticity and can be 
related to the vortex-shedding phenomenon. For a two-dimensional flow its integrand reduces to: 

x
p~

v~ N
z ∂

∂
ω−  

It can be argued that this integrand takes significant values at localized points inside the motor chamber, 
such as the nozzle entrance where vand~

zω  are large, thus providing a natural way to introduce the 
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coupling between the vortical and the acoustic fields. The volume integral can then be reduced to a surface 
integral at the vortex “impact” point as proposed by Flandro. 

Intrinsic Non-Linear Nature 
Attempts to complement the basic acoustic balance approach are impeded by difficulties linked to the 
departure of the unsteady field, in particular the velocity field, from the pure acoustic vision. Indeed,  
the flow-turning debate illustrates the difficulty in incorporating unsteady vorticity in the acoustic 
framework, while the vortex-shedding issue exemplifies the difficulties in taking care of flow instabilities 
in the linear framework.  

The fact that the mean flow can become unstable by its own is now an accepted result. The fact that this 
unstable behavior cannot easily fit into the acoustic framework is also becoming evident. One of the 
reasons that one can invoke is that flow instability evolves on its own, as an independent mechanism, with 
no need to an acoustic reference. The attempts to treat separately these two independent mechanisms from 
variable decomposition: mean and fluctuating flows, with the fluctuating flow composed of an 
compressible irrotational (acoustic component) and an incompressible rotational (vortical component) 
components, at the basis of Flandro’s approach, failed to provide useful results. The reason of failure lied 
not in the necessary coupling equations, which could be written, but rather in the difficulty to describe the 
vortical evolutions. Indeed, vortical flow can be characterized in its linear regime (initial growth of 
instability waves) with proven methods (Orr-Sommerfeld type approaches) but growth rates in this early 
linear regime are quite high and the vortical field rapidly enters some form of non-linear regimes which 
are much more complex to model. The fact that in most situations the interactions between the two 
unsteady fields occur when the vortical fields has become non-linear, may explain the failure of the above 
mentioned approaches. 

Most of the time, observable vortices are the results of a non-linear growth process. As a 
consequence, our knowledge of such vortices and of their dependencies on the known parameters is 
blurred by the non-linear growth stage of initial unstable vortical waves, a process which most of the time 
remains beyond our present understanding. However it is of major importance to better understand the 
initial destabilisation mechanisms, simply because they have definite frequency signatures and 
sensitivities to flow characteristics which must be known in order to understand their potential 
effectiveness to couple with acoustic waves and produce harmful vortices. Controlling the early stage of 
flow instabilities is undoubtedly an effective mean of avoiding unwanted motor instabilities driven by 
some form of vortex-shedding. In that view the knowledge of flow stability characteristics is an 
essential prerequisite to any attempt in controlling motor flow driven instabilities. This is detailed in 
the second paper devoted to the stability theory. 

Model Requirements 
From what precedes, it is clear that if motor flow driven instabilities have to be predicted, one has to rely 
on a model that has the ability to describe, in the same framework, both the acoustic waves and the 
vortical waves (including non-linear interactions). From that point of view, the full numerical solution of 
the compressible Navier-Stokes equations provides the needed framework.  

However, since the instabilities can be viewed as resonance mechanisms that involve the motor chamber 
acoustic modes and unstable couplings of physical phenomenons linked to the mean flow, the Navier-
Stokes equations have to be completed to include all the needed phenomenons. Considering the nature of 
the solid propellant rocket internal flows, identified physical mechanisms are: 

• 

• 

the mean flow itself, including sheared flows, nozzle flows, and turbulence, 

the propellant combustion at the burning surface, 

RTO-EN-023 7 - 17 



Motor Flow Instabilities – Part 1  

• 

• 

• 

• 

• 

• 

• 

• 

the combustion of aluminum droplets carried by the flow, 

the structure motions (as possibly affecting the mean and unsteady flows). 

Finally, the model should be able: 

a) to propagate the acoustic waves, 

b) to describe the details of the internal flow, including the capture of acoustically forced vorticity 
waves as well as flow instabilities and their non-linear growth, 

c) to include some form of condensed phase model (inert and reactive), 

d) to couple with propellant combustion models, 

e) to couple with solid mechanic models. 

This analysis concluded that full solutions of the compressible unsteady Navier-Stokes equations, 
including reactive two-phase flow treatments should be sought. Indeed, as already mentioned,  
such solutions have the capability to describe both the acoustic and flow vorticity, without the need to 
separate the solution in several flow components. We have underlined that this poses some problems for 
describing each component in a compatible way. Further, such a model could be coupled through its 
boundary conditions to propellant combustion models and solid mechanic codes, to permit a complete 
description of the identified mechanisms. This would then provide an unprecedented tool for analyzing 
motor instabilities.  

However, such a solution would necessarily rely on a numerical solution of the equations and some 
concerns were raised about the ability of the numerical procedure to faithfully describe the solution, due to 
numerical errors and grid size requirements. As a consequence, it was agreed that such a solution method 
should pass through a severe validation procedure before it could be safely used in predicting motor 
stability. 

This validation requirement posed in turn some constraints which were the need for detailed 
measurements in known situations to provide the data against which the numerical results would be 
validated. This was quite a new constraint and it promoted a series of unique research works, sometimes of 
ingrate nature, that had to be performed to sustain the construction of this new tool. Here “ingrate” must 
be understood, not as scientifically uninteresting works but rather as far from actual motor applications 
and thus implying difficulties in being funded and fully appreciated by program managers. However,  
such works were essential and ranked from: 

Cold flow simulators in which detailed velocity measurements could be performed and compared 
to numerical simulation results, 

Analytical solutions of unstable flow regimes, 

Dedicated lab scale motors with high quality and numerous measurements to gain real firing tests 
data, 

Meticulous characterization efforts to provide the model inputs. These comprised condensed 
phase characterizations, details of the propellant composition, including characterizations of AP 
and aluminum size distributions, and unsteady propellant combustion responses function 
determinations, 

Dedicated models for combustion mechanisms and fluid-structure couplings, 

Dedicated and documented test cases for model evaluations. 

Such works have be carried out in Europe thanks to the Ariane 5 related programs and represent a valuable 
asset for the development of a comprehensive model for motor stability predictions. For the first time,  
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at the end of that research effort, actual unstable motor behaviors could be simulated numerically and 
produced results that agreed both in frequency and in oscillatory amplitude, with motor measurements. 
Results of such quality were judged unattainable at the start of the research effort and are worth to be 
celebrated. Of course much remains to be done yet, to guarantee the capability of a priori predictions from 
scratch (i.e. before any firings are performed). 

STABILITY THEORY 

This part is described in details in the second paper. 

DEALING WITH FLOW STABILITY 

Experimental Evidences 

From early works of Flandro et al., it was expected that flow instabilities could drive unstable motors.  
In particular, it was stressed that inflectional velocity profiles, as created above protruding obstacles or at 
propellant grain discontinuities could be at the origin of unstable flows, prone to produce vortex-shedding 
driven instabilities. The works carried out in the USA, relative to the Space Shuttle and the Titan boosters, 
clearly demonstrated that vortex-shedding could drive the first longitudinal modes of the motor  
[27-30, 18-22]. The works of Dunlap et al. [19] established that for such large segmented space boosters, 
protruding inhibitor rings, such those created by the front ends thermal insulations of propellant segments 
(typically the aft segments), could be at the origin of highly sheared flow that produced periodic vortex-
shedding driving the motors unstable. This was also observed in Ariane 5 boosters [31]. The resulting mild 
pressure oscillations were disturbing since all these motors were predicted stable by the acoustic balance 
method and more annoying, they produced significant thrust oscillations, due to high pressure to  
thrust ratio (of the order of 10). This high value of the ratio can be straightforwardly explained from  
geometric and phase relationships. Moreover, the low frequencies associated with these large motors 
(recall that f1L ≈ a/2L) rendered such oscillations undesirable since they were able to couple to the 
structural modes and thus to propagate easily to the launcher structure and payloads.  

The vortical origin of these oscillations can be traced to their particular frequency signatures. Indeed it was 
observed that instabilities followed peculiar frequency tracks, showing decreasing frequencies and sudden 
jumps around the pure acoustic frequency. For example, the figure below shows the time evolution of the 
head end pressure power spectral density for one subscale firing. The particular frequency tracks around 
chamber acoustic mode frequencies (solid lines) is evident. The decrease of the frequency during motor 
burn was viewed as an indication of the driving being the result of flow instabilities, linked to the mean 
flow axial velocity. Indeed in most solid propellant motors the axial velocity continuously decreases,  
due to increasing motor port area, as propellant burns out. The jumps were viewed as system adaptation to 
changing conditions: when the vortex driving frequency falls too far away from the acoustic frequency,  
an increase in the number of vortices occurs (see eqn. 31) to bring back the driving frequency in the 
acoustic range. Such behaviors could not be explained by the acoustic balance approaches and were 
considered as evidence of an hydrodynamic origin of the oscillations. 
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Figure 5: Typical Frequency Tracks for Flow Driven Instabilities (LP3 E Firing). 

In Europe the development of the Ariane 5 segmented solid rocket motor promoted researches in that area, 
looking to unstable behaviors of segmented motors. A subscale motor was designed from a simplified, 
1/15th scale, geometry of Ariane 5 P230 MPS solid rocket motor. Cylindrical propellant grains were used 
and a non-aluminized propellant was chosen. Since the emphasis was put on flow driven instabilities it 
was thought that details of the combustion should be of secondary importance. The overall P230 
segmentation scheme was reproduced with a propellant loading composed of three segments: a short head 
end segment of limited burn time (roughly 20% of total burn time), two longer mid and aft segments.  
As in the full scale motor, a submerged nozzle assembly was retained. This motor was named LP3 and 
five configurations were fire tested [24, 32]. For each configuration, two firings were performed to check 
for reproducibility. The configurations differed between each other by segment arrangements, as depicted 
in figure 6 below. 

LP3 A 
 

Nominal configuration: mid and aft 
segments inhibited on their forward 
ends 

LP3 B 
 

Inhibitor rings on both ends of the 
mid-segment. Aft segment free of 
inhibitor. 

LP3 C 
 

Mid segment inhibitor moved to 
segment aft end. 

LP3 D Mid and aft segment replaced by a 
single longer segment 

LP3 E 
 

Aft segment free of inhibitor 
 

Figure 6: The LP3 Configurations. 
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These configurations permitted a parametric study of the second inter-segment arrangement (termed IS2) 
which was suspected to be at the origin of the unstable sheared flow capable of driving motor instability. 

Configurations A, D and E produced the most remarkable results, with clearly different behaviors.  
The figures below, taken from reference [33] illustrates these results. They show head end pressure power 
spectral densities (psd). 

 

 

LP3 A: firing 1/91 LP3 D: firing 2/91 LP3 E: firing 1/93 

Figure 7: Typical Results of LP3 Motors (Head-End Power Spectral Densities) 
NB : f1L ≈ 300 Hz, f2L ≈ 600 Hz, f3L ≈ 900 Hz. 

These results show that all three configurations were unstable and that the frequency tracks were 
organized around the first three longitudinal modes. Decreasing frequency tracks with sudden jumps are 
clearly visible and indicate that the observed instabilities belong to flow driven instability regimes. 
References [24, 25] present the results of the acoustic balance approach that was applied to all LP3 
configurations and concluded that the motors should be stable. These results were at the origin of a brand 
new understanding of flow instabilities. Before these results, it was accepted that in segmented motors, 
like those of the US Space Shuttle, US Titan launcher or the European Ariane 5 MPS, the protruding 
inhibitor ring at the IS2 location was the major source of vortex-shedding, due to the highly sheared flow 
around the obstacle created by the protrusion of the inhibitor. This situation is present in LP3 A and results 
show that it produces instabilities, early in the burn, at high frequencies (around the third longitudinal 
mode, close to 900 Hz). The other results were rather surprising, since significant amplitudes were 
recorded despite the motor configurations do not comprise protrusion of obstacle in the flow. This was 
viewed as an indication that another mechanism for flow instabilities was present. The fact that LP3 D 
configuration was unstable was in itself like an earthquake in our understanding. How such a simple 
geometry (at the time where instabilities are observed, the motor was very much a pure cylindrical grain) 
can produce flow instabilities ? This question motivated the throughout analysis of the Taylor’s flow 
stability, as described in the second paper. The results of that analysis were beyond all expectations.  
They clearly showed that the simple Taylor’s flow bore in itself the roots of instabilities [34]. This rather 
simple flow (velocity field expresses as mere sine and cosine laws) was found to undergo intrinsic 
destabilization at a moderate critical abscissa of x/R close to 3 (for axisymmetric configurations),  
and mostly independently of the flow Reynolds number. Moreover the frequencies of the early unstable 
waves were found to lie in the range of longitudinal acoustic mode frequencies. This opened the way for a 
radically new interpretation of unstable flow regimes, driven by intrinsic flow instability. This was 
supported by unprecedented full numerical simulations of motor instabilities [35]. These showed that 
observed instabilities in LP3 D and LP3 E configurations were of a same nature and implied a coupling of 
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Taylor’s flow intrinsic unstable waves with longitudinal acoustic modes of the chamber. This coupling 
produced what was called parietal vortex-shedding: vortices are generated at the burning surface and move 
downstream until they interact with the submerged nozzle. Afterward, it was noted that first hints of 
Taylor’s flow instabilities were mentioned and detailed in the synthesis article of Dunlap et al. [36]. 

Simplified Approaches 
In the quest for situations that would permit the full numerical model validation it was decided to use 
Flandro’s approach to devise the simplest motor that could produce vortex-shedding driven instabilities. 
From the ingredients of Flandro’s explanation to unstable motor it was retained that, in order to devise a 
“whistling motor”, one would need to produce a mean flow with a localized inflectional profile whose 
unstable frequencies could match the chamber first longitudinal modes frequencies. That work, described 
in details in [17, 23], consisted in devising an unstable motor from first principles and is worth being 
related here as an example of the use of simplified methods to analyze flow driven instabilities.  
The starting point is a simple motor geometry used for code evaluation that comprises a prismatic grain 
geometry. This geometry produces an inflectional velocity profile at the exit of the cylindrical portion of 
the grain (here x=155 mm), as described in figure 8 below. 

 

Figure 8: Simple Motor Geometry Producing an Inflectional Velocity Profile at x=155 mm. 

Under the assumption of parallel flow, it is possible to characterize the stability properties of this profile 
from Orr-Sommerfeld type equations, in their spatial growth formulation. In this formulation velocities are 
expressed relative to ∆U, the velocity difference across the shear layer and distances are expressed relative 
to δ, the thickness of the shear layer. The time scale is thus δ/∆U. The main result is the complex 
dimensionless wave number a= ar + iai , obtained as a function of the real dimensionless frequency, 
expressed as a Strouhal number, cr = 2πfδ/∆U. The opposite of the imaginary part of the wave number,  
-ai , represents the spatial growth rate and the ratio Kv = cr/ar is the vortex phase velocity in ∆U units.  
These results are depicted in figure 9 below. 
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Figure 9: Stability Properties of the Inflectional Profile. 

The results of the Orr-Sommerfeld solver can be viewed as universal curves, characterizing profiles of 
similar shapes, defined by their values for δ and ∆U. For such profiles, the most unstable frequency is 
given by cr = 0.3 with an associated vortical wave length, λv = 2πδ/ar = Kv(2πδ/cr). From fig. 9 it is useful 
to note that there exists an upper limit (cr ≈ 1.6) above which no unstable waves can be sustained.  
The coefficient Kv is the ratio cr/ar and is also a direct result of the velocity profile stability analysis.  
It represents the ratio of the vortex displacement velocity to the shear layer velocity difference ∆U.  
This is a useful information if phase relationship have to be compared, as in the Rossiter’s approach 
(coefficient k). 

In order to devise a whistling motor, one has to verify that: 

a) the most unstable frequency of the vortical waves matches the chamber longitudinal acoustic 
mode frequency, 

b) the stand-off distance separating the vortex emission point to the interaction point, assumed to be 
localized at the nozzle entrance, is sufficient to contain an integer number of vortices of wave 
length λv. 

These two conditions are necessary conditions to produce vortex driven instabilities. Experience show that 
they are also, in most cases, sufficient conditions. 

It is then a simple matter to adjust the motor chamber length (which governs the frequency of the qth 
longitudinal mode, fq = q a0/2L), by increasing the distance between the downstream end of the propellant 
grain and the nozzle, to verify the two conditions stated above. Considering an actual motor, propellant 
combustion implies a continuous increase of the internal grain port diameter, D, and consequently a 
continuous decrease of the mean flow axial velocity, U, at the grain downstream end (from simple mass 
balance). Assuming that δ and ∆U are known functions of D and U: δ = KδD and ∆U = KUU, one can 
follow the evolution of the vortical wave properties during motor burn. This will permit final adjustments. 
This exercise was performed on a laboratory scale motor configuration and resulted in the C1xb motor 
depicted in figure 10 below. The stand-off distance from propellant end to the nozzle entrance plane was 
adjusted to provide frequency match during most of the motor burn time. In the frequency versus 
propellant web distance burned plot, we followed the time evolution of the frequencies corresponding to  
cr = 0.3 (most amplified frequency) and cr = 1.6 (upper frequency limit of the unstable velocity profile)  
in the grid formed with the chamber acoustic mode frequencies (horizontal lines). It clearly appears that 
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the range of possibly excited modes rapidly narrows to the first acoustic mode, in the second half of the 
firing. 

 

STABLE 

UNSTABLE 

 

Figure 10: C1xb Motor Design from the Simple Frequency Match. 

Although the acoustic frequencies never match the most amplified frequency, it was anticipated that the 
motor would be unstable. Indeed, a coupling path is available since the acoustic frequency of the first 
mode lies in the range of the shear layer unstable frequencies. In that vision, the shear layer is a mere 
broad band amplifier and will naturally tune to available frequencies. This actually worked. The C1xb 
motor was constructed and fired several time at ONERA, in the framework of J. Dupays’s thesis [37, 38]. 
Good reproducibility was observed and the motor was used in the validation work of the full numerical 
approaches (see below). Figure 11 illustrates the results of one C1xb firing. It clearly shows that, after a 
first phase where higher frequencies are present a second phase occurs with a clear flow driven motor 
destabilization on the first mode frequency, around 700 Hz. 

 

Figure 11: Example of One C1xb Firing Test. Head end unsteady pressure time history and psd. 

The same simplified approach can be carried out from the stability properties of the Taylor’s flow 
(detailed in the second part of this paper). The starting point is again the frequency range of early vortical 
waves. Again, the velocity and length scales are directly obtained from the stability analysis: Vinj is the 
injection velocity, and h, the height (or radius) of the chamber. The knowledge of the frequencies of 
possible unstable waves, in Vinj/h units, permits to identify configurations whose acoustic frequencies of 
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interest can be matched. This provides the necessary ingredients for positive coupling and permits to 
identify configurations that would be prone to acoustic resonances. Again this exercise was done for the 
2D planar VECLA cold gas set-up and produced remarkable results [39-42]. Figure 12 below represents 
the results of the hydrodynamic stability analysis in the form of the wave growth factor as a function of 
dimensionless frequency and the dimensionless distance from the head-end.  

 

Figure 12: Results of the Stability Analysis of the Taylor’s Flow. Spatial amplification  
factor as a function of dimensionless frequency and distance from the head-end. 

However, simple frequency match considerations are not always sufficient to describe conditions for 
acoustic resonances, in particular for the type of instability like Taylor’s flow instability. Other parameters 
must be included, such as vortical wave growth distance, non-linear saturation, amplitudes, non parallel 
nature of the flow (its stability properties depend on x) and phases and amplitudes at interaction points. 
Two critical interaction points have been identified: motor exit or nozzle entrance point where the vortices 
exchange energy with the acoustic waves and “receptivity” point where the acoustic waves feed back to 
the vortical waves. At the present time these issues are not yet fully settled, although some clear trends 
have been pointed out in B. Ugurtas and J. Griffond theses [43, 44]. 

Simple approaches are interesting because they permit to summarize the accumulated knowledge in simple 
relationships that help understanding the mechanisms that govern such delicate couplings. However they 
cannot provide quantitative results and full numerical approaches are then needed. It must be noted that 
although very powerful, the full numerical approaches would only give global results  
(much like an experiment) that will require, in turn, some form of analysis to build some knowledge. 

Full Numerical Approaches 
The full numerical approaches provide an unprecedented mean to analyze the details of the flow field 
during flow driven motor instabilities. In particular, the ability to see the internal details of the flow field 
has proven to be useful in classifying the flow regimes that led to motor instabilities. We already 
mentioned the role of the numerical simulations in pinpointing the Taylor’s flow instability origin of the 
instabilities in the LP3 D/E motor. The results of the full numerical approach permitted to identify three 
types of flows that led to motor instabilities. 

• Obstacle vortex-shedding (termed VSO from the French acronym “vortex-shedding d’obstacle”) 
where the shear layer responsible for the shedding of vortices is created by a protruding obstacle  
(such as an inhibitor ring). This corresponds to the first idea from the US experience on the Space 
Shuttle SRB and early Titan IIIC/D then 34D motors, but also to the nominal version of the LP3 
subscale motor, LP3 A. This situation is illustrated below. 
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• Corner vortex-shedding (termed VSA from the French acronym “vortex-shedding d’angle”) 
corresponding to simplest case where shedding was produced by an obstacleless shear layer  
(jetting effect) corresponding to the C1xb situation, illustrated below. 

 

• Surface or parietal vortex-shedding (VSP from the French acronym “vortex-shedding pariétal”)  
where the shedding results from an intrinsic instability of the internal flow, corresponding to versions 
D and E of the LP3 motor, without aft segment inhibitor rings, the cold flow set-up Vecla but also to 
the recent TITAN IV/SRMU motor. The figure below illustrates this situation. 

 

The benefits of the full approaches are not limited to this useful insight nor to the capability to treat both 
acoustic and vortical waves in the single framework of the compressible full (non-linear) Navier-Stokes 
equations. Although important these are not sufficient to open the way to useable stability previsions in 
real motors. We have seen that most of the time, mild pressure oscillations are present in motors predicted 
stable from acoustic balance method. The important information are then the frequency and the amplitude 
of these pressure oscillations, as well as their efficiency in translating to thrust oscillations. The full 
approaches must then have the capability in providing such information. This implies that some of the 
phenomenons identified in fig. 1 that are missing in the approach have to be taken care of.  
Since phenomenons numbered 2, 3 and 5 (nozzle flow, vorticity waves and vortex-shedding) are already 
included in the full Navier-Stokes approach, models must be devised for including the phenomenons 
numbered 1, 4 and 6 on fig. 1 (propellant combustion, two-phase flow and turbulence). To these internal 
phenomenons, the possible coupling with the motor case or elements of structure must be added.  
Under these conditions, the full numerical approaches will become a useful tool for an oscillation free 
motor design (quiet motor). 

Research work is heading in that direction and the present state of the art is coming close to that 
requirement. This will be illustrated by three examples in the next section. Most of these examples have 
been obtained in the validation stage. Indeed, as already mentioned, the validation of the numerical tools is 
of first importance and represent the price to pay for a reliable prevision of motor stability and/or control. 
References [45-50] are examples worth mentioning to complement other cited references. 

Examples 

Example 1: The C1xb and VSA 

From the beginning, the C1xb motor was designed as to be a first stage of validation at the laboratory 
scale. As described in J. Dupays’ thesis the emphasis was put on the two-phase flow effects, combined 
with vortex-shedding driven oscillations. Following first demonstration of effective motor destabilization, 
as presented here above, the motor was fired with propellants having different inert particle loadings. 
Although this work produced unprecedented results, in particular on the influence of the inert particles on 
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oscillatory levels (to the contrary of the ideas inherited from the acoustic balance approach described 
earlier, amplitudes were not always decreased by the presence of condensed phase) it was limited by the 
difficulties in characterizing the propellant combustion response. A quantitative comparison in term of 
frequency and amplitude was nevertheless conducted few years later, once propellant characterization 
became available. This is described in [51] and the main results are presented below. The propellant 
response function is treated as an unsteady boundary condition that is derived from the linear relationship 

defining the pressure coupled response function 
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This simple boundary condition proved to be quite effective and produced quasi-perfect agreement 
between the experimental measurements and the computations. Due to uncertainties in the propellant 
characterization two response curves were considered. Although these curves largely differed, the results 
were found to be significantly improved with both response functions. The figure below presents the 
unsteady flow field in the C1xb motor at the 10.7 mm web distance burned which was chosen for the 
comparison, and the following table summarizes the quantitative results, in terms of pressure amplitudes 
and frequency. 

Figure 13: C1xb Flow Field at 10.7 mm of Web Distance Burned. 

 

 No response Response #1 
(mne) 

Response #2 
(glk) 

Experiment 

Head-end amplitude (hPa) 
(relative error) 

12.7 
(71%) 

28.5 
(35%) 

43.1 
(2%) 

43.9 

Aft-end amplitude(PC6) (hPa) 
(relative error) 

15.5 
(39%) 

20.6 
(20%) 

26.6 
(4%) 

25.6 

Frequency (Hz) 
(relative error) 

740 
(3.8%) 

720 
(1.0%) 

715 
(0.3%) 

713 

Frequency resolution (Hz) 23 23 23 10 

The “no response” results were found to be improved for both response functions. In particular, the ratio 
of head-end to aft-end pressure amplitudes together with the oscillation frequency were found to better 
match the experimental measurements. Best results were obtained with the second response curve with an 
almost perfect agreement. It must be stressed that it was the first time that full approach results could be 
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compared to actual firing test measurements. The rather satisfactory agreement was seen as an evidence 
that the full approach was sound and could provide quantitative stability data, such as frequency and 
amplitude of limit cycle oscillations in actual motors. 

Example 2: The VECLA Set-Up and the VSP 

The VECLA cold flow set-up of ONERA was extensively used to understand the VSP mechanism and to 
validate the full numerical approach. The VECLA set-up is a modular air fed set-up. It is 2D planar and 
the length to height ratio can be varied through variation of chamber height (the length of the porous wall 
is fixed at 581 mm but the height can be varied from 30 to 10 mm). It can be tested with or without a 
choked nozzle. In the configuration without nozzle, the injection velocity can be easily varied by changing 
the air mass flow rate. This provided a very convenient mean to control the flow field inside the VECLA 
set-up.  

At least three different behaviors were documented: 

a) For large length to height ratio (h=10mm) transition to turbulence was observed inside the 
chamber. 

b) For moderate length to height ratio (h=20mm) acoustic resonance could be produced for a definite 
range of injection velocity. 

c) For small length to height ratio (h=30mm) no acoustic resonance nor turbulent transition are 
observed. However, the flow exhibits local instabilities that can be compared to the stability 
analysis. 

All three regimes were used to validate the full numerical approach.  

Case a) served to validate turbulence models [52] and will not be detailed here.  

Case c) provided unprecedented check of the linear stability results, as described in the second paper. 
Unstable wave frequency range and spatial growth rate were found to match the stability results.  
These results were also used to check the full Navier-Stokes approach, as described in B. Ugurtas’ thesis 
[43]. The claim was that the full Navier-Stokes solution contains the early hydrodynamically unstable 
waves. This was verified in case c). Simulations were performed and the unsteady field was extracted 
from the full Navier-Stokes solutions by Fourier transforms at given frequencies. The shape and growth 
rate of the unstable waves were compared to the linear stability results and showed good agreement,  
as illustrated by the figures 14 and 15 below. 
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Figure 14: Comparison of the Navier-Stokes Results with the Linear Stability Analysis.  
Velocity spectrum and spatial amplification factor. 

                   

Figure 15: Comparison of the Navier-Stokes Results with the Linear Stability Analysis.  
Amplitude and phase of the velocity radial profile. 

This established the ability of the Navier-Stokes solver to properly describe the early destabilization 
processes of the Taylor’s flow. 

Case b) was also used to check the ability of the full Navier-Stokes approach to reproduce acoustic 
resonance regimes. For this case, the ratio Vinj/h could be adjusted so as the unstable stability wave 
frequencies match the chamber longitudinal mode frequencies. Clear cases of acoustic resonance could be 
observed in a definite injection velocity range. By imposing a time variation of the injection velocity in the 
Navier-Stokes simulations resonances could be simulated in good agreement with the experimental results. 
This is illustrated by figure 16 below. 

RTO-EN-023 7 - 29 



Motor Flow Instabilities – Part 1  

       

Figure 16: Comparison of the Navier-Stokes Results (right) with the Experimental Results (left).  
Velocity psd as a function of the injection velocity. 

Satisfactory qualitative agreement is observed, establishing the ability of the full approach to reproduce 
resonant regimes in VSP situations. However, the oscillatory amplitudes were found to be over-estimated. 
Reference [53] presents an effort to bridge the amplitude gap. In that work, the negative response function 
of the porous wall was included in the simulation (on the contrary to burning propellant, the porous wall 
has a negative response to pressure waves, resulting in significant damping of the excited acoustic waves). 
In an attempt to better stick to the experiment, the flow destabilization in the numerical solution relied on a 
white noise, introduced at the porous surface vicinity, whose characteristic was matched with the 
measured injection noise. This produced a marked decrease of the simulated oscillatory amplitude being 
now comparable to actually measured amplitudes, as displayed in figure 17. 

 

Figure 17: Head-End Pressure Spectra. From left to right: a) Initial Navier-Stokes solution;  
b) Navier-Stokes with porous wall response and white noise model; c) Experiment. 

The exemplary simplicity of the VECLA set-up permitted to go one step further in establishing  
the validity of the full numerical approach and to actually see the so-called parietal vortices. Following 
Prof. Culick’s suggestion, the injected flow was seeded with acetone and laser induced fluorescence 
permitted to actually see the vortices in the VECLA set-up [54]. It must be stressed that this constituted a 
world premiere that confirmed that the computed vortices were indeed present in the experimental set-up. 
Figure 18 below illustrates this result. 
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Figure 18: PLIF Images of Vortices in VECLA Set-Up (top)  
Compared to the Computed Vorticity Field (bottom). 

Example 3: An Actual Motor (VSP + VSO) 

Application to an actual full scale motor was rendered possible by the validation effort depicted in the 
preceding examples and completed by a two-phase flow model that was also validated [37-38, 55]. 
Considering that the actual Ariane 5 motor used an aluminized propellant, the two-phase flow solver was 
completed by a very basic aluminum combustion model. This model was based on the d2 model that links 
the aluminum droplet burn time to the square of its diameter. Realistic value for the reaction heat was 
used. The inter-phase source terms in the balance equations were thus modified to include the mass and 
energy exchanges due to droplet combustion. This is detailed in reference [56]. 

Then the early K4 configuration of the Ariane 5 P230 was simulated, with or without the reactive two-
phase model. The chosen time point was that of maximum of observed oscillatory amplitude. The retained 
experimental configuration was that of the M1 firing test at 95 s into the burn. 

This work showed that simulations without aluminum combustion were not satisfactory since they could 
not reproduce the oscillation frequency and amplitude. Detailed analysis of the numerical results showed 
two competing mechanisms: the VSO vortices from the protruding inhibitor, at a higher frequency, close 
to the third acoustic mode frequency and the VSP vortices that developed along the aft segment, at the 
lower first mode frequency. This competition resulted in the absence of acoustic resonance. On the other 
hand, when aluminum combustion was introduced, the VSP was reinforced to the point that it became 
dominant and forced the VSO to tune to the first acoustic mode frequency. This resulted in marked 
resonance in better agreement with the experimental results. This is illustrated by the following figure. 

 

       

Figure 19: M1 Results for the Single Phase (left) and Reactive Two-Phase (right) Models.  
Head-end pressure time history and spectrum, vorticity field. 
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The computed frequency was then close to the first acoustic mode frequency and the oscillatory 
amplitudes were comparable to the measured amplitudes. Of course, this result depends on the model 
inputs, particularly the size of the aluminum droplets and of the alumina residues, as well as on model 
details or inhibitor ring properties (deformation, vibrations, ...) which may have some incidences on the 
computed flow field. Such data are still not perfectly known and some characterization and modeling 
works are still needed before a satisfactory prediction can be guaranteed in such complex full scale motor 
configurations. 

Example 4: Active Control Demonstration 

To complete this example section, it is interesting to illustrate the capability of the full numerical approach 
to validate closed loop active control concepts. The idea was to use the full Navier-Stokes solution to 
evaluate control strategies and to demonstrate the feasibility to control flow driven instabilities. It was then 
decided to use the simulated flow field in the simplest VSA configuration. The test case C1 was used.  
This test case is the first configuration designed with the simplified approach, as described above for the 
C1xb motor. On the contrary to the C1xb motor, it is a purely numerical test case [23] that has been used 
at the beginning of the Navier-Stokes codes validation effort. It is fully documented and has been 
computed many times by many codes. 

Roughly speaking, the active control loop is composed of: 

• 

• 

• 

A transducer that records the state of the internal flow, 

An actuator that is capable of acting on the flow field, 

A controller that processes the transducer signal into a signal that is fed to the actuator. 

This is completed by an identification step that defines the actual transfer function between the actuator 
and the transducer. 

During operation, the controller adjusts its own transfer function to minimize the output signal of the 
transducer. 

The work presented here is the result of a cooperation between the EM2C lab at ECP and ONERA. It is 
described in details in M. Mettenleiter’s thesis and in reference [57, 58]. 

Transducer was normally taken as computed pressure at the nozzle entrance section but a numerical 
vorticity transducer was also tested. Actuator was modelized by distributed mass sources, representing an 
injection of a reactive fluid. Actuator was placed at the chamber head-end (case 1) but some tests were 
also performed with an actuator placed in the vicinity of the unstable shear layer (case 2). Figure 20 below 
presents the control scheme for C1 test case. Two main control strategies were tested. They belonged to 
anti-noise control and to noise source control. In the latter strategy the aim is to actively control the source 
at the origin of the acoustic resonance rather than controlling the resulting acoustic wave. 

Identification/Contrôle  IC IC 
 

Figure 20: Control Schemes for the C1 Test Case. 
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The control algorithm was introduced as Fortran subroutines into the Navier-Stokes solver.  
Special attention was given to the calling sequence between the Navier-Stokes solver iterative time 
integration and the controller own process. Adapted filtering steps were added to the coupling procedure, 
in order to take care of the very different time scales between to two programs. Indeed, the time step of the 
explicit Navier-Stokes solver is of the order of 10-7 s, while the time scale of the controller is of the order 
of 10-4 s. Under such conditions, very significant reductions of the oscillatory amplitude could be 
demonstrated. One of the difficulty was that the acoustic resonance could occur in a large frequency range. 
This is illustrated on figure 10 that shows that at given web distance burned, several acoustic modes lie in 
the unstable range. The direct consequence was that once the motor was controlled on its initial resonant 
frequency, it shifted to another resonance at a higher frequency, corresponding to the next acoustic mode. 
Then the controller had to adjust itself to the new condition. This illustrated the benefit of an adaptive 
active control loop, as the one proposed by EM2C/ECP, for the flow driven instability under 
consideration. 

Control was achieved in the standard configuration (nozzle end pressure transducer + head-end actuator) 
that could correspond to an actual motor configuration. However, the numerical approach permitted to test 
other configurations, not yet fully adaptable to an actual motor, such as the vorticity transducer combined 
with an actuator located in the vicinity of the unstable shear layer (case 2). Not surprisingly, this latter 
configuration exhibited better performance in term of time to control and residual amplitudes. Figure 21 
below illustrates this performance. 

Before control 

After control 

Head-end pressure 

 

Figure 21: Demonstration of Adaptive Active Control in C1 Test Case (Case 2). 

CONCLUSIONS/UNSETTLED ISSUES 

The intensive research effort conducted in the past 12 years in the framework of the European Ariane 5 
launcher related programs has produced a new vision for motor instability. It is now clear that instabilities 
must be approached in a global fashion that puts the internal flow field and related phenomenons, such as 
gaseous and condensed phase combustion, vorticity (in the form of acoustically forced vorticity waves, 
developed vortices or early flow instability waves) and structural response, in the center of the 
investigation. The early acoustic balance approaches, although extremely profitable in term of 
understanding and isolating physical phenomenons, could not produce the expected answers for motor 
sustaining mild amplitude limit cycle pressure oscillations. 
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It has been shown that under the condition that the necessary validation and characterization efforts were 
conducted, the numerical solution to the full unsteady compressible Navier-Stokes equations, together 
with ad hoc models for coupled mechanisms, could produce valuable results in close agreement with 
experimental measurements. 

Of course obtaining meaningful numerical solutions, in particular in such a challenging and delicate 
context remains a difficult task. The grid issue is undoubtedly one of the most crucial issue. In order to 
stay within acceptable limits in terms of computer CPU time and memory occupation, the grid must be 
tailored to each case. Our ability to produce adequate grids in then a direct function of our knowledge of 
what the important flow features are and where they are located. This clearly limits the use of the full 
numerical approach to documented situations and a priori predictions cannot be guaranteed in any 
situation. However, once the applicability has been established for a given type of configurations,  
the numerical approach can be used with large benefits to analyse and optimise the configuration. 

Another limitation is the choice of the proper models to describe non flow related mechanisms such as 
combustion, structural response, ... These models bear their own limitations that are of two types:  
the physics that is included in the models and the necessary inputs to the models. Both limitations can 
impair the successful application of the model into the numerical solution. Aluminum combustion is 
presently one area where progresses are expected for both types of limitations. This implies dedicated 
experiments and analyses to better describe the complex mechanisms that govern the formation of 
aluminum droplets, their combustion and finally the production of alumina droplets in complex flow 
fields. In particular the question of droplet interactions in a large population of various sizes and 
compositions, remains open. 

Finally, several years of experience with full numerical solutions, where most often several models are 
coupled in a non-linear fashion, have put to light many unexpected or surprising results. It is always 
surprising to realize that the resulting behavior is not the mere addition of individual effects or that a 
linearly damping mechanism can increase the limit cycle amplitude. This departure from the common 
linear thinking poses some problems when results are to be analyzed, understood and finally validated or 
accepted. This difficulty, far from being a mere curiosity, renders the progressive validation approach 
mandatory, in order to know how confident one can be when confronted to unexpected results. Often,  
the simplified approaches can be called in to help analyzing the results. 

Most often success lies in a proper combination of both approaches. It is then recommended that the 
rocket engineer who has to deal with instabilities exercise in both approaches. 
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